
NASA Contnrtat R+ 178351

ICASE REPORT NO. 87-50

ICASE
PERFORMANCE ISSUES FOR WMAIN-ORIENTED

TIME-DRIVEN DISTRIBUTED SIMULATIONS

David M. Nicol

Contract No. NASl-18107
July 1987

I 187-283C7 (6&Sd-CR-178351) PERFCRWAOCE ISSUES FOR
CCEAIW-00XEBSED TIWE-DbIVEN CI5IRIBUTED
S I B U L A T I C U S (t I A 5 A) 1; p A v a i l : NSIS BC

I
I I Unclas ACS/HF A01 CSCL 098

G3/6l 0 0 9 4 1 2 8

INSTITUTE FOR COMPUTER APPLICATIONS IN SCXENCE AND ENGINEERING
NASA Langley Research Center, €lampton, Virginia 23665

Operated by the Universities Space Research Association

Performance Issues for Domain-Oriented Time-Driven
Distributed Simulations*

David M. Nicof
The College of William and Mary

and
Institute for Computer Applications in Science and Engineering

Abstract

It has long been recognized that simulations form an interesting and important clase of com-
putations that may benefit from distributed or parallel processing. Since the point of pwallel
processing is improved performance, the recent prolieration of multiprocessors requires that
we consider the performance issues that naturally arise when attempting to implement a dia-
tributed simulation. Three such issues are (i) the problem of mapping the simulation onto the
architecture, (ii) the possibilities for performing redundant computation in order to reduce com-
munication, and (iii) the avoidance of deadlock due to distributed contention for message-buffer
space. This paper discusses these issues in the context of a battlefield simulation implemented
on a medium-scale multiprocessor message-passing architecture.

'To Appear in the Proceedinga of the 1987 Winter Simulation Conference, Atlanta.
'This research was supported in part by the National Aeronautics and Space Administration under NASA Contract

Nul-18107 while the author waa in reoidence at ICASE, Mail Stop 132C, NASA Langley Research Center, Hampton,
VA 23665.

i

1 Introduction

. This paper discussea three performance issues that a r e in our implementation of a time-driven
battlefield simulation on a medium-scale multiprocessor. The problems we identify are generic, BO

that the observations we make and the conclusions we draw are applicable to the general class of
physical domain Simulations which use time-stepping to advance the simulation. The first issue
we discuss is that of mapping the simulation onto the multiprocessor. Under the message-passing
paradigm, the assignment of workload to processors has the single most important influence on
performance. The second issue is that of performing redundant computation in order to avoid a
certain amount of communication. This issue is important when the cost of communication is high.
Finally, we discuss the possibility of deadlock due to distributed contention for message buffers,
and outline a solution which insures that deadlock does not occur.

2 A Battlefield Simulation

The model problem for our study is a battlefield simulation based on Zipscreen [2,4], written
by John Gilmer of the BDM Corporation. Zipscreen is a simplified version of the CORBAN [3]
simulation for the purposes of studying performance issues in mapping battlefield simulations to
parallel architectures. Zipscreen and CORBAN represent a battlefield as a two dimensional plane
tessellated by hexagons (in addition, CORBAN imposes a hierarchical scheme of hexagons on this
domain). Combat unite move through the domain; units from opposing sides engage in simulated
combat when they are geographically close. Figure 1 illustrates the hexagonal plane and combat
units.

Both Zipscreen and CORBAN are time-driven, rather than discrete-event simulations. There
are strong reasons to suspect that the discreteevent paradigm on battlefield simulations will
severely l i t podlsible performance gains achievable by parallelism. The problem of avoiding dead-
lock in distributed discreteevent sirnulatione hae been well studied [1,6,14]. A formal treatment
in [7] has proven that to avoid deadlock without rolling back simulation clocks, it is neceeeary for
certain logical processes to be able to predict their future message-passing behavior far enough into
the future to allow some other logical process to advance its clock (deadlock avoidance protocols
that rely on prediction demonstrate only the euficiency of behavior prediction). The ability to
predict future behavior is very limited in battlefield simulations, implying that the synchronization
constraints and overhead of avoiding deadlock are likely to adversely affect performance. The Time
Warp [5] mechanism of rolling back clocks avoids the behavior prediction problem, but does so at
the cost of extensive memory requirements, and the potential threat of having rollback “thrash-
ing’’. While Time Warp is an aesthetically pleasing idea, its utility on large real-world problems
has yet to be empirically demonstrated. Time-stepped simulations seem to offer the best poten-
tial for battlefield simulations, since all computational activity for a time-step can be performed
concurrently. However, it is important that the time-step be large enough to allow a significant
amount of computation.

3 The Mapping Problem
Zipscreen focuses on the perception, combat, and movement activities found in CORBAN. At every
time-step, a unit perceives others by manning its resident hex and all directly adjacent hexes for

1

Figure 1: Battlefield Simulation Board

enemy units. The unit then engages in combat with all of these enemy units, and reports the losses
it inflicts on those units. Following combat, the unit changes its geographical position, possibly
moving to a different hex.

Zipscreen organizes its data by maintaining lists of hexagons on which units reside; for every
such hex it maintains a list of resident units. The mapping of units to processors clearly has
a significant impact on performance. The efficiency of perception is very much affected by the
mapping, since some units will have to perceive units resident on different processors than their
own. Combat is computationally intensive, and so the mapping has an important influence on load
balancing. Inter-unit (and hence potential inter-processor) reporting of losses is affected by com-
munication costs as well. The efficiency of movement also depends on the cost of communication;
the fact that units dynamically move has a profound impact on load balancing and load balancing
strategies. Zipscreen’s concerns for communication and computational costs in the face of uncertain
and changing workload are representative of similar concerns for any simulation of any irregular
phenomenon in a physical domain.

Because of the relatively high cost of message passing on current parallel architectures, it is not
efficient to employ the type of fully dynamic workload assignment (e.g. idle processors access a cen-
tral work queue) so effective on shared memory machines. Instead, the workload assignment needs
to be semi-static, changing only infrequently. An apparently natural static workload assignment is
to simply assign each processor an equal number of units, an approach discussed by Gilmer and
Hong, in [4]. Since one unit can conceivably interact with any other unit from an opposing side,
this approach requires that every processor communicate (directly or indirectly) with every other
processor, if only to say that it has nothing to communicate. In addition to the high communica-

L

2

tion needs, Gilmer and Hong noted that the approach suffered from load imbalance. This problem
arises because serious computation occurs only when units are geographically close, so that at any
given time step a unit may or may not demand substantial computation. A simple analytic model

The fundamental cause for performance declines due to load imbalance is the extreme sensitivity
that globally synchronous algorithms have to load distribution. The execution time of a time-step
is determined by the processor having the most to do during that time step. For instance, if the
most heavily loaded processor has just 15% of the workload in a simulation using sixteen processors,
the eficiency (speedup/#processors) is just 41%-on average, a processor is idle 59% of the time
simply waiting for the most heavily loaded processor to finish. Because a battlefield simulation’s
workload is 80 unpredictable and variable, a static workload mapping is not likely to give high
efficiencies for every time step.

Our approach is to map regions of the domain to processors, rather than directly assigning
units. A processor is responsible for simulating units on its assigned subset of the domain. A two-
dimensional domain tessellated by hexagons can be viewed as a “rectangular” array of hexagons.
This is seen in Figure 2 where the “rows” are clearly defined while the hexes in a “column” zig-zag
vertically. For the purposes of partitioning, we assume that the domain consists of a rectangular

.
derived in [9] demonstrates why significant load imbalance can be expected using their method.

Figure 2: Rectangular Partitioning of Domain .
array of hexes, where each hex can be uniquely identified by its row and column indices. Partitioning
consists of covering the domain with rectangles each w hexes wide and h hexes tall (with the
possibility of some deviation from these dimensions at the edges of the domain). These rectangles
themselves form a rectangular array that we index by “rectangle row” and %ectangle column”.
We cover the domain by assigning hex (i , j) to rectangle (i mod h , j mod w). In a similar fashion,

3

we view the N processors as forming a r by c rectangular array of processors. Then, rectangle
(I C , rn) and all the hexes it contains are assigned to processor (k mod r, rn mod c). This scheme is
called wrapping, and has been studied on a variety of problems [13] . Figure 2 shows a wrapped
assignment of blocks with w = 2 and h = 3 to the four processors Pi, PI, 4, P’ (with the obvious
mapping between two dimensional and one dimensional indices).

The communication requirements of this approach are very local. The vast bulk of communi-
cation is between processors holding adjacent regions-every processor is logically adjacent to at
most six others. Our mapping scheme requires that a processor hold copies of all units in hexes
adjacent to those assigned to the processor. The number of these “boundary hexes” (and hence the
number of additional units a processor must hold copies of) is strongly dependent on the size (and
hence number) of the subregions. Communication is required every time-step between processors
to insure that the status of border units is properly maintained. Our strategy of partitioning a
domain and exchanging boundary information during run-time is similar to strategies employed by
parallel scientific programs [8,15]. In both scientific codes and our battlefield simulation, partition-
ing the domain into large subregions leads to lower communication costs than does partitioning into
small subregions. However, large subregions lead to higher risks of load imbalance. Some degree of
load balancing could be achieved simply by assigning adjacent hexes to different processors. This
balance comes at the price of increased communication overhead. The values w and h allow a
parameterized partitioning of the domain. Smaller values create a finer granularity of workload,
and tend to yield a better balance of load. By using a parameterized approach to partitioning, we
can control the trade-off between load imbalance and overhead, and find the best granularity for
the problem and architecture. The principles underlying this tradeoff are discussed further in [13].

Wrapping exploits the observation that for many problems arising from physical domains, work-
load tends to be positively correlated in space. Use of wrapping increases the likelihood of breaking
up regions of high computational activity for execution by several processors. In a battlefield sim-
ulation this is true for two reasons. The first follows from the rule requiring engaged units to lie on
the same or adjacent hexes. If there is combat activity on a hex, there is a significant chance that
the opposing units lie on different hexes, so that simulated combat occurs on at least two adjacent
hexes which might be separated by wrapping. The second reason follows from the observation that
battles (and hence battlefield simulations) tend to be localized in space. The knowledge that a
particular hex contains an engaged unit makes it likely that the hex lies in a region where the main
battle-lines are drawn. Wrapping increases the chance of giving each processor a section of the
bat tle-line.

Our version of Zipscreen currently runs on the Flex/32 Multicomputer at the NASA Langley
Research Center. The Flex has twenty processors, two of which serve as hosts; the remaining
eighteen are used for parallel processing. Each processor is NS32032 based, and has approximately
1M bytes of local memory. There is a global memory with approximately 2.25M bytes. Zipscreen
uses the global memory only to implement message passing between processors. Since the bulk
of inter-processor communication costs are related to costs of message handling and not to actual
transmission, the Flex/32 implementation should fairly well represent performance achieved by
message-passing architectures with fast communication channels but not necessarily fast access
protocols .

Our experiments used data sets which simulate a battlefront in 32 x 32 and 64 x 64 hex domains.
An imaginary line intersecting both the top and bottom rows of the domain is drawn; this line
separates units from opposing sides. Each side has 500 units, distributed randomly within a corridor

4

4 -

Execution 3 -

Time
(minutes) 2 -

1 -

Figure 3: Performance as Function of Granularity

e

0 0

0
0

I I I I I

several hexes wide abutting the dividing line. The units’ directions are set so that the opposing sides
become closer. The simulation is run for fifty time-steps, during which time the two sides largely
pass through each other. Early time steps tend to require a heavy amount of battle simulation,
while later time steps require substantially less. This mixture of activity is intended to measure
the “average” performance of the distribution scheme.

Figure 3 plots the measured performance of a representative run using sixteen processors on
a 32 x 32 domain, as a function of the degree of granularity. The value n of the horizontal axis
is the number of hexes arranged in a square) in a logical block. The timings exclude the time
required to load the simulation on the processors, but do include 1/0 required during the run. A
typical speedup for this type of problems is 8.5; the average speedup when using eight processors is 5.
These speedups are actually quite reasonable, considering the dynamic nature of the simulation and
the static nature of the mapping. The performance does leave significant room for improvement;
dynamic remapping schemes such as those discussed in (10,11,12] offer promise of even better
speedups.

Our implementation of Zipscreen divides a time-step into a computation phase, followed by a
communication phase. During the computation phase every processor is engaged in the perception
and combat activities. At the beginning of the computation phase every processor has an updated
local copy of any unit which may engage with some unit owned by the processor. The computation
phase generates damage reports, which are then exchanged among processors during the communi-
cation phases, along with reports of movement of units between processors. This structure allows
us to measure the processor efficiency during just the computation phase, and hence measure the
effects of our mapping scheme on Computation costs in near-isolation from its effects on communi-
cation costs. Figure 4 plots average processor efficiency during the computation phase as a function
of the size of the (square) hex blocks assigned to processors. This data was taken from a run using
sixteen processors on a 64 x 64 hex domain. It is clear that our intuition behind the mapping of

5

0.8 e

c

Average 0.7

Utilization 0.6

0.4
Oe5 1

e

0

e
0.3 I I I I I I 1

1 4 9 16 64 256

Hexes in Square Block

Figure 4: Effects of Granularity on Load Balance

domain to processors is borne out in practice.

4 Trading Redundant Computation for Communication

It is sometimes possible to reduce communication by performing redundant computation. Consider
the case where opposing units u and v are on adjacent hexes which happen to be assigned to
different processors. If u resides on a hex assigned to processor P(u), then P(u) is responsible
for computing the losses that u inflicts on v. But processor P (v) also holds a copy of u, and
could do the computation itself, relieving P(u) from the task of communicating the damages u
inflicts on v. P(u) will still simulate u attacking v, in order to keep v’s state up to date. Thus
redundant computation (simulating u’s attack on u) can avoid some communication. This tactic
may prove to be especially important if communication is very expensive relative to computation.
In our experiments we found that performance eufered using this technique, largely because a
combat’s computation ia more expensive than the communication of its results. However, we
also allowed redundant computation of a unit’s new position during the movement activity-the
processor owning the unit computes the new position, aa does any processor holding a hex adjacent
to u’s. In this case, the computational cost of movement was dominated by its communication cost,
so that redundant computation improves performance.

5 Deadlock Avoidance

Much of the early work in distributed simulations was devoted to the development of synchroniza-
tion protocols which avoided deadlock [1,6,14]. This work considered the possibility of deadlock

6

Figure 5: Original Message Causes Propagating Messages

occurring in discrete-event simulations, due to the inter-process synchronization necessary to insure
the simulation’s correctness. This type of synchronization problem does not exist in time-driven
simulations. Nevertheless, deadlock can occur when there is distributed contention for message
buffers.

Consider the following ecenario. A meaeage to processor Pi appears in Pi’s incoming mesaage
queue; the message reports that damages have been inflicted on a unit u in one of Pi’s subregions
by units in Pj’s subregions. As illustrated in Figure 5, when Pi consumes this message it can trigger
messages to processors P’ and PI advising them of u’s new status. For Pi to due so, P’ and Pl
must both have available space to store incoming messages-if not, the messages from Pi cannot
be sent until space is free, and so pi must block itself. However, either processor Pk or Pl may be
blocked for similar reasons, permitting the insidious deadlock cycle to form.

One “solution” to this problem is to simply have an overabundance of message buffer space
available. This will not guarantee that deadlock cannot not occur, but can make the probability
of deadlock low. On the other hand, it is not difficult to insure that deadlock does not occur in
our implementation of Zipscreen. Every message in Zipscreen is either an original or a propagated
message. In the example above, the message from Pj to Pi was original, while the messages to Pk
and Pl were propagations of that original message. The problem arose because consumption of the
original damages message required the use of buffer space elsewhere (even freeing the buffer space
occupied by the original message does not solve the problem since the freed space can be filled while
the processor is blocked). Every original message has the potential to do this. However, propagated
messages do not further propagate; the consumption of a propagated message will never cause a
processor to block.

7

Because of the regularity of our mapping, we know that one processor never communicates with
more than six others. It is therefore practical for a processor to reserve message buffer space for
every communicating neighbor in order to store incoming original messages, and to reserve space
for every processor who might cause a propagation message to be sent (this processor need not be
a neighbor, e.g. Pj and Pk in Figure 5). In the unlikely event that the hex blocks are single hexes,
space for at most eighteen processors must be reserved. The reservation requirements decrease
rapidly as the size of the blocks increas-pace for only eight processors is needed using 2 x 2 hex
blocks. Whenever processor Pi sends a message to Pj it includes the status of Pj’s original message
buffer space, and it includes the status of all propagation buffers reserved for neighbors of Pi. Pi
may pick off the buffer status information without actually consuming the message which carried
it. The status of Pi’s reserved buffers may also be queried (through a reserved query buffer) at
any time. Note that the ‘status” of a buffer may be the number of free bytes, allowing several
unconsumed messages to concurrently exist there.

A number of actions may cause a processor to generate an original message to a neighbor.
For example, the damage message in the example above is caused by Pj’s action of reporting
the accumulated damages it has inflicted on unit u. Freedom from deadlock is insured if (i) a
processor never takes an action until there is space available to receive all original and propagated
messages the action may cause, and (ii) an original message is never consumed until there is space
available to receive all propagated messages that the consumption may cause. A processor may
consume a propagated message a t any time. To show that deadlock cannot occur, note first that
if a deadlock cycle forms, then eventually all propagation messages will be consumed. This allows
every processor in the deadlock cycle to consume an original message (possibly generating more
propagation messages, but these can always be consumed); the consumption of original messages
frees the processors to take actions, because the necessary original and propagated message buffer
space becomes available. Consequently deadlock never occurs.

6 Summary

An effective parallel execution of domain-oriented time-driven simulations requires the solution to a
number of performance problems. First, the simulation workload must be well mapped to keep the
load balanced and the communication needs low. We illustrate an effective solution to this problem
using a battlefield simulation as a model problem. In the face of significant communication costs
i t may be advantageous to perform redundant computation to forestall communicating the results
of that computation. This point was also illustrated in the model problem. Finally, even though a
time-driven simulation does not suffer from the synchronization problems that plague distributed
discrete-event simulations, deadlock can still occur. We showed how deadlock can occur in the
model problem, and outlined an efficient method of deadlock avoidance.

Acknowledgements: Thanks are due to John Gilmer who provided us with his Zipscreen source
code, and to Frank Willard who did most of the early coding. This project has benefited greatly
from discussions with Joel Saltz and Paul Reynolds.

‘Thio observation aaumeo that a unit cannot SkipD over a h a from one timeotep to the next.

8

r

r

References

K. M. Chandy and J. Misra. Distributed simulation: a case study in design and verification of
distributed programs. IEEE Trans. on Software Engineering, 5(5):440-452, September 1979.

J.B. Gilmer. Documentation, State-Space Reconciliation Version of the Zipscreen Prototype
Simulation. Technical Report, BDM Corporation, 1986.

J.B. Gilmer. Statistical Measurements of the CORBAN Simulation to Support Parallel Pro-
cessing. Technical Report BDM/ROS-86-0326, BDM Corporation, 1986.

J.B. Gilmer and J.P. Hong. Replicated state-space approach for parallel simulation. In Pro-
ceedings of the 1986 Winter Simulation Conference, Washington, D.C., 1986.

D. R. Jefferson. Virtual time. A CM Tmn8. on Programming Languages and Systems, 7(3):404-
425, 1985.

P. F. Reynolds Jr. A shared resource algorithm for distributed simulation. In Proceeding8 of
the Ninth Annual International Computer Computer Architecture Conference, pages 259-266,
Austin, Texas, April 1982.

D. M. Nicol. The Performance of Synchronin'ng Networks. Master's thesis, Department of
Computer Science, University of Virginia, January 1984.

D. M. Nicol and F. H. Willard. Problem size, parallel architecture, and optimal speedup. In
Proceedings of the 1987 International Conference on Parallel Processing, pages 347-354, S t.
Charles, Illnois; 1987.

D.M. Nicol. Mapping Domain- Oriented Time-Driven Simulations onto Message-PaSSing Par-
allel A rchitectures. Technical Report 87-51, ICASE, September 1987.

D.M. Nicol and P.F. Reynolds Jr. Optimal Dynamic Remapping of Parallel Computations.
Technical Report 87-49, ICASE, July 1987.

D.M. Nicol and J.H. Saltz. Dynamic Remapping of Parallel Computations with Varying Re-
source Demands. Technical Report 8645, ICASE, July 1986. to appear in IEEE Transactions
on Computers.

D.M. Nicol and J.H. Saltz. Optimal Pre-scheduling of Problem Remappings. Technical Re-
port 87-52, ICASE, September 1987.

D.M. Nicol and J.H. Salts. Principles for Problem Aggregation and Assignment in Medium
Scale Mu~tiprocessors. Technical Report 87-39, ICASE, July 1987.

J. K. Peacock, E. Manning, and J. W. Wong. Synchronization of distributed simulation using
broadcast algorithms. Computer Networks, 4:3-10, 1980.

D. A. Reed, L. M. Adams, and M. L. Patrick. Stencils and problem partitionings: their
influence on the performance of multiple processor systems. IEEE Trans. OR Computers, C-
36(7):845-858, July 1987.

9

Standard Bibliographic Page

L. Report No. NASA CR-178351
ICASE Report No. 87-50

2. Government Accession No.

L. Title and Subtitle

PERFORMANCE ISSUES FOR DOMAIN-ORIENTED TIME-DRIVEN
DISTRIBUTED SIMULATIONS

r. Author(s)

David M. Nicol

19. Security Classif.(of this report) 20. Security Classif.(of this page) 21. No. of Pages
Unclassified Unclassified 11

3. Performing Org ization Name and Address
Institute %r Computer Applications in Science

Mail Stop 132C, NASA Langley Research Center
Hampton, VA 23665-5225

and Engineering

12. Sponsoring Agency Name and Address

22. Price
A02 -

National Aeronautics and Space Administration
Washington. D.C. 20546

15. Supplementary Notes

Langley Technical Monitor:
Richard W. Barnwell

Final Report

3. Recipient’s Catalog No.

5. Report Date

July 1987
6. Performing Organization Code

~

8. Performing Organization Report No.

87-50

505-90-21-01
11. Contract or Grant No.
NAS1-18107

10. Work Unit No.

13. Type of Report and Period Covered

Contmtor Report
14. Sponsoring Agency Code

Submitted to Proc. of the 1987
Winter Simulation Conference

16. Abstract

It has long been recognized that simulations form an interesting and
important class of computations that may benefit from distributed or parallel
processing. Since the point of parallel processing is improved performance, the
recent proliferation of multiprocessors requires that we consider the
performance issues that naturally arise when attempting to implement a dis-
tributed simulation. Three such issues are (i) the problem of mapping the
simulation onto the architecture, (ii) the possibilities for performing
redundant computation in order to reduce communication, and (iii) the avoidance
of deadlock due to distributed contention for message-buffer space. This paper
discusses these issues in the context of a battlefield simulation implemented on
a medium-scale multiprocessor message-passing architecture.

17. Key Words (Suggested by Authors(s)) I 18. Distribution Statement

parallel processing, simulations 61 - Computer Programming and
Software

NASA Langley Form 63 (June 1985)

~

